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the partial derivative of (B 8) with respect to y is equal 
to (5). Therefore, we have two proofs that Borie is 
wrong in his argument. 

It may be quite difficult to obtain any analytical 
expression for I(x,y). But remember that we are only 
interested in the integral (6) often with an extra integra- 
tion over the divergence angle e. Therefore the correct 
procedure is to look for numerical approximations to 
the integral (6). In the case of strong absorption, we 
have shown (Becker & Coppens, 1974) that no general 
solution can be found. However, when #~r is not too 
large, we have shown that most of the coupling between 
absorption and multiple scattering can be dealt with by 
using the general extinction expressions and just re- 
placing the mean path length T = t~ + t~ by its absorp- 
tion-weighted value 

f dv T exp (-pT) dv, (9) T . = A v  

where A is the absorption factor. When dealing with 
accurate structure-factor determination, such condi- 
tions are generally fulfilled. 

In conclusion, very complicated expressions such as 
those derived by Borie, using Werner's method, are 
believed to be of little practical use. In contrast, I want 
to repeat that the method of point sources, which 
eliminates boundary conditions, is certainly of strong 
potential usefulness (Becker & Dunstetter, 1982). 
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Abstract 

Programs have been written to calculate TDS correc- 
tions from Long Wave eigenvectors and modelled 
frequency Dispersion of the acoustic branches (LWD 
approximation). Calculations on naphthalene crystals 
with neutral and with charged atoms were carried out 
to check the convergence of the lattice dynamical 
calculations and of the numerical integration proce- 
dures used in the programs. 

1. Introduction 

It has been shown by Kroon & Vos (1979; referred to 
as KV) that corrections of X-ray diffraction intensities 
for thermal diffuse scattering (TDS) can be calculated 
in very good approximation by the LWD method. This 
method has in common with the long-wave (LW) 
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method that only acoustic branches are taken into 
account and that eigenvectors for g = g(smaU) are used 
for all values of the wave vector g. In contradistinction 
to the LW method, the LWD method accounts for the 
real frequency dispersion vj(g) instead of taking the 
linear relation 

vj(g) = vj(g) g (1) 

where g is a unit vector along g and vj(g) is the acoustic 
velocity along g for branchj ( j  = 1-3). 

Frequency dispersion curves and eigenvectors can, 
in principle, be obtained by inelastic neutron scattering. 
Long-wave eigenvectors can also be deduced from the 
elastic constants of the crystal considered (Wooster, 
1962; Born & Huang, 1968). In favourable cases both 
quantities can be obtained by lattice dynamical 
calculations. Such calculations can, for instance, be 
made for crystals consisting of rigid-body molecules 
with uncharged atoms with the program LATDYN 
written by Kroon (1977). 

The LWD method can easily be incorporated in 
programs which compute TDS corrections according 
© 1983 International Union of Crystallography 
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to the LW method (see, for instance, Helmholdt & Vos, 
1977; referred to as HV). The present paper describes 
the transformation of the LW program TDS2 of 
Helmholdt (1975) to the LWD program TDS2/3,  and 
gives the changes applied to the program LA TD YN to 
make it suitable for rigid-body molecules with charged 
atoms. TDS calculations in the LWD approximation 
have been performed on naphthalene to check the 
convergence of the numerical procedures in the 
computer programs. 

2. T h e o r y  

2.1. Total TDS contribution to a reflection 

The volume in reciprocal space swept out by a scan 
is given by HV for the 0/20 and the 09 scan methods. In 
good approximation this volume can be represented by 
a parallelepiped for their experimental conditions. The 
(long-wave) program TDS2 divides this volume into 
pyramids. The TDS contribution a(H) l Fo(H ) 12 to the 
intensity of a reflection H is obtained by analytical 
integration over each pyramid and numerical inte- 
gration over the pyramids. For definitions and symbols 
not defined here, see HV. For linear frequency 
dispersion (formula 1) and neglect of quantum effects, 
a(H,g) dr/(g) for the pyramids around g and - g ,  each 
having solid angle dr/(g), is given by HV (formula 11): 

2kTV(cell) 
aLW(H,g) dr/(g) = H 2 G 

M(cell) 

3 laj(0. l  
x ~ dr/(g) (2) 

j = ,  

with k Boltzmann's constant, T absolute temperature, 
V(cell) volume of cell, M(cell) formula weight of cell, 
H = 2sin 0/2 length of diffraction vector H, G 
maximum value of g for pyramid concerned, fij(~) 
polarization vector of mode j for direction 3, ~ unit 
vector along H. 

The derivation of (2) shows that the factor 1/v](~) 
arises from the integral 

I~W(G,6) = G-I f 
g2 dg 

0 v](~) g2 

1 
--  v](~) " (3) 

According to (1), vj(~)g is the approximated value for 
(~). If this approximation is abandoned, the integral 
W(G,~) has to be replaced by 

G 

IyWD(G,}) = G -1 f [g2/v](g)] dg. (4) 
0 

For practical calculations we have approximated (4) by 
its series expansion in G 

m(max)  
LWD IJ, ser (G,e) = E Cj, m(}) Gm. (5) 

m=0 

According to HV, formula (12) for each independent 
bounding plane I(I-3) of the scanned volume parallele- 
piped, the solid angle drlt, n of the nth surface element 
AOt, n = AO l is given by 

dl?t, n = (z~O 1 COS 2 flln)/Gdt, (6) 

where d I is the distance from the centre of the 
parallelepiped to plane L Replacement of 1/v](~) in (2) 
by (5) and summation over all pyramids gives 

2kTV(cell) H 2 AO t 
aLWD(H) = M(cell) ~ ~ ~ c°s2 fltn 

I n 
3 

X ~ lllj(e).pl 2 ~ Cj, m(e ) Gm. (7) 
J =  1 m 

2.2. The TDS contribution to the background of  a 
reflection 

For symmetrical scans the TDS at the beginning and 
the end of a scan is obtained as 

da(H)/dtds(H)] (8) 

with l = s indicating the bounding planes of the 
parallelepiped seen at the beginning and the end of the 
scan. The total TDS background amounts to 

aLWO(H) = 2ds(H ) da(H)/d[ds(H)] 

2kTV(cell) 1 
= H 2 ds(H ) AOs 

M(cell) G 2 
n 

3 

x ~ Ifij(6).l~l 2 ~ (1 + m) Cj, m(6) Gm. (9) 
j = l  m 

Note that for WD - - 2 ^ ~ser(G,6) = Cj,0(6) = 1/vj(6) formulae 
(7) and (9) reduce to the LW formulae (13) and (16) in 
HV if the correction for quantum effects F(Yj) = 1; 
2d s = L(HV). 

2.3. The net TDS contribution 

The net fractional TDS contribution to a reflection is 
given by 

aLWD(H;net) = aLWD(H) -- aLWD(H). (10) 

3. C o m p u t e r  programs  

The following changes have made the program 
LA T D Y N  (KV) suitable for rigid bodies with charged 
atoms: (1) extension of the minimization procedure 
with convergence acceleration according to Williams 
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(1971) for the functions 1/R and l /R6;  (2) con- 
sideration of  complete molecules ra ther  than  a toms 
within a certain summat ion  limit in the calculat ion of 
the dynamica l  matrix.  The directions ~ for which the 
curves v/(~,g) and the long-wave eigenvectors are 
calculated are approximate ly  equally spaced over a 
hemisphere.  F r o m  a number  N, which is about  equal to 
the total  number  of  directions for a hemisphere,  the 
polar angles Xm and tP,nn for each direction (m,n) are 
taken  as 

Xm = n/(2Nx) + (m + 1) lr/N x 

tp,nn = nn/N,(m)  

with 

N x = Int[(ztN/2) 1/2 + 0.9] 

N~(m) = Int(N x sin Z,, + 0.9). 

The  f requency dispersion curves vj(~g), either obtained 
from LA T D Y N  or from experimental  data,  are trans-  
formed to the integrals IjLWD(G,~) and the series 
expansions  I~,WD(G,~) by the p rogram LA TFIT. 

The p rogram TDS2 (HV) has  been changed to 
TDS2/3 to accept  the coefficients Cj,,,(~) and the 
long-wave eigenvectors. In TDS2/3 each reflection has 
its own scanned volume and its own pyramids  r with 

direction ~ .  The p rogram takes as constants  Cj,m(~,) 
and eigenvectors fij(~,) the da ta  for the directions 
closest to ~,. Also, an option has  been added which 
deduces the eigenvectors fij(~) from elastic cons tants  
and uses experimental  v/(g) curves. 

The set of  p rograms was checked by reproducing the 
L W D  results published by KV;  apart  f rom a factor  of  
1.31 which forms an error in their normalizat ion.  

4. Application to naphthalene 

The calculat ions were performed for the naphtha lene  
structure described by  KV. The interact ion functions 
used for the lattice dynamica l  models are given in Table 
1. The interact ion constants ,  which were taken from 
Will iams (1970, 1974), are not  specifically adjusted to 
the experimental  elastic constants  of naphthalene.  The 
results obtained by LA T D Y N  and LA TFIT (Table 1, 
Fig. 1) show that  the crystal  with charged atoms is 
'harder '  than  the crystal  with neutral  atoms. 

Calcula t ion of  vj(~.,g) at g intervals of  0 .005 A -1 has  
given dispersion curves which are within 0 .1% equal to 
dispersion curves calculated for very small intervals 
(0.001 A- l ) .  For  m(max)  = 6, I)WD(G,~) is approxi- 
mated within 0 . 2 %  by wD - /~J, ser (G,e). 

Table 1. Results obtained by L A T D Y N  and L A T F I T  for  naphthalene crystals with neutral and with charged 
atoms 

The axes El, E2, E 3 are unit vectors along a*, b*, e. 

Neutral Charged Neutral 

Old version of LA TD YN Modified version of LA TD YN Limit 
(6-exp) potential Charges: C -0.179e, H Number of contacts 
functions (Williams, +0.179e, plus corresponding 
1970) potential functions (Williams, 

1974) 

Rotation 
with respect to Kroon & Vos (1979) 

El E2 E3 El E2 E3 
0.00 0.00 0.00 ° 1.08 --1.96 --0.11 ° 

Charged 
Minimization 

7.0A 7.0A 
2260 2260. Reciprocal limit 0.7/~-1 

Convergence constant 0.35 
Number of reciprocal-lattice 

vectors 506 

Lattice dynamical calculations 
Limit 7.0/~, 7.0/~, 
Fragmented molecules Completed molecules 
Number of contacts 2260 11016 

Results for 3//[4E l + E3]; t21 = component eigenvector 

Neutral 
j = l  j = 2  j = 3  

~x --0.2192 0.0001 --0.9757 
ay 0.0000 1.0000 0.0001 
~, 0.9757 0.0000 -0.2192 
C o 0.3530E -- 5* 0.2861E - 5 0" 1634E - 5 
C 1 --0.7455E -- 6 -0.3851E -- 5 0.9872E - 5 
C2 0.2865E - 3 0.1407E - 2 -0.2762E - 2 
C 3 -0.1877E - 1 -0.1445E + 0 0.2445E + 0 
C 4 0.8433E + 0 0.7313E + 1 -0.8761E + 1 
C 5 -0.1717E + 2 -0.1693E + 3 0.1209E + 3 
C 6 0.1326E + 3 0.1492E + 4 -0.3604E + 3 

Charged 
j = l  j = 2  j = 3  

-0.1085 0.0000 -0.9941 
0.0001 1.0000 0.0000 
0.9941 0.0001 --0.1085 
0.3378E - 5 0.2045E -- 5 0.1335E - 3 

--0.2130E -- 6 --0.6671E - 6 -0.1140E -- 6 
0.6521E - 4 0.2274E - 3 0.6352E - 4 

-0.2102E-- 2 --0.2115E- 1 -0.8751E-- 2 
0.7247E - 1 0.1014E + 1 0-5965E + 0 

--0.1178E + 1 -0.2229E + 2 --0.1725E + 1 
0.7660E + 1 0.1842E + 3 0.1784E + 1 

* E - 5 is equivalent to x 10 -5. 
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For the case with charged atoms and 640 directions 
6, the total computing time for LA TD YN plus LA TFIT 
is 500 CPU s on a CDC CYBER 176 at the computing 
centre of the University of Groningen. 

For the TDS calculations the following measuring 
conditions were applied: co scan, crystal-slit distance 
173 mm, slit height 4 mm, scan width (0.844 + 0.50 
tan 8) °, slit width 3 mm, T = 100 K. Numerical 
integrations were performed for approximately 300, 
500 and 1000 independent pyramids per scanned 
volume. After it had been proven that for 500 
independent pyramids the accuracy is better than 1%, 
all further calculations were carried out for 500 
pyramids. Table 2 illustrates the influence of the change 
of the number (Nre) of directions @ on a hemisphere. 
For naphthalene with uncharged atoms convergence to 
a level of 1% is reached for Nre ~_ 640 and for 
naphthalene with charged atoms for Nre ~_ 325. 

For a division of the scanned volume into 500 
pyramids plus their symmetrically related ones, the 
average computing time for TDS2/3 is 0.6 CPU s plus 
1.2 IO s for each reflection, on a CDC CYBER 175. 

In Table 3, for a series of reflections, tILWD(H;net) 
and ~tLW(H;net) values are given. The experimental 
elastic constants are taken from Aleksandrov, 
Belikova, Ryzhenkov, Teslenko & Kitaigorodskii 
(1963). Comparison of the LWD and LW values for 
the model with charged atoms shows that the differ- 
ences between corresponding values vary from 
- 7 %  (reflection 18 ,6 , -8 ) to  +3% (reflection 11,4,4). 
Larger differences are observed for the model with 
neutral atoms. Earlier calculations by KV for the model 
with neutral atoms have shown that the 'exact' lattice 
dynamical values are approached much better by the 
LWD than by the LW method. This shows that, 
especially for large scan angles, it is worthwhile to 

20 

0 

(/~WD(~)) X lO ~ 

NO CHARGES 

CHARGES 
J 

i i i i i i 

1 2 3 4 5 6 

10G 2 (,~- l) 

Fig. 1. I~WD(G,~) averaged over ] ,  for ~//[4E l + E 3] (for definition 

o f  E l, Ez, E 3 see Table 1). 

apply the LWD rather than the LW approximation, if 
reasonable models for the frequency dispersion are 
available. 

The aLW(H;net) values obtained for the model with 
charged atoms show considerable deviations from the 

Table 2. Influence of  number (Nre) of ~ vectors per 
hemisphere on a(H; net) values 

Nre is given at the top o f  each a column in parentheses 

(a) Naphthalene with neutral atoms 

h k l sin 0/• (/~--1) • (325) a (640) a (1270) 

7 1 5 0.751 0.235 0 .298 0 .300  
8 9 0 0 .946 0 .399 0.433 0.431 

10 7 6 1.160 0.696 0 .784 0.789 
18 6 - 8  1.211 0 .888 1.137 1.123 

For  27 reflections R(640 /325)  = Z l A a I / X l a l  = 0.190,  
R (1270/325) = 0.189 and R (1270/640) = 0.008 

(b) Naphthalene with charged atoms 

h k l sin 0/2 (A -~) a (325) a (640) 

7 1 5 0.751 0.176 0.177 
8 9 0 0 .946 0 .302 0.306 

10 7 6 1.160 0.517 0 .512  
18 6 - 8  1.211 0 .702  0.695 

For  27 reflections R (640/325) = 0 .006 

Table 3. a L W D ( H ;  net) and a L W ( H ;  net) values (x 10 3) 

for naphthalene, from the lattice dynamical models 
(Nre = 640), and from experimental elastic constants 
Results are given for the arbitrary set of  reflections adopted by 
Kroon  & Vos (1979) to present their results. 

Model Model Elastic 
neutral charged constants 

sin 0/2 
h k l (A -~) LWD LW LWD LW LW 

0 1 3 0.222 3 3 2 2 3 
4 5 -1 0.490 50 46 38 37 33 
2 5 3 0.518 64 61 49 49 33 
1 6 --4 0.556 59 59 49 49 50 
6 0-10  0.581 64 67 60 60 83 
6 6 -5 0.628 109 100 80 78 80 

12 1 -6  0.735 231 176 150 141 125 
9 5 -9  0.738 191 175 144 141 136 
7 1 5* 0.751 298 354 177 180 88 
8 2 4* 0.778 341 401 208 212 103 
7 8 -10 0.892 274 283 229 230 240 

10 0 4* 0.898 531 656 309 315 162 
8 9 0 0.946 433 372 306 299 239 
0 5 13 0.983 259 266 228 230 294 
3 6 --14 0.997 246 248 240 242 337 

11 4 4* 1.024 702 856 425 436 253 
17 1 -11 1-040 700 647 427 400 367 
12 9 --3 1.077 689 557 457 434 363 
0 13 1 1.085 408 411 328 330 317 
2 13 -5 1.121 440 443 355 358 355 

15 7 -14 1-146 656 702 493 501 496 
10 7 6* 1.160 784 881 512 524 350 

1 14 -1 1-168 475 482 370 376 362 
3 13 5 1-190 566 592 440 446 371 

13 8 -16 1.191 576 600 482 487 546 
4 13 --9 1.202 486 488 406 410 445 

18 6 -8  1.211 1137 1023 695 645 519 

* [] roughly paraUelto 7E 1 + 2E 2 + 2E3(seetex0. 
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aLW(H;net) values based on the experimental elastic 
Constants (for neutral atoms the deviations are even 
larger). However, errors in the elastic constants 
strongly influence the aLW(H;net) values based on 
them. Changes of +25% occur, if the elastic constants 
are changed by +o in a random way. Within this large 
experimental error aLW(H;net) for the charged-atom 
model shows reasonable agreement with the LW values 
calculated from the elastic constants for most re- 
flections. Exceptions are the reflections with H roughly 
parallel to 7E 1 + 2E 2 + 2E 3 (for definition of El, E2 
and E 3, see Table 1), for which aLW(H;el) is relatively 
small. 
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Abstract 

The least-squares refinement of macromolecular struc- 
tures is characterized by a low ratio of observed data to 
refined parameters. Efforts have been made to com- 
pensate for this problem by incorporating subsidiary 
restraints into the observational equations. In this 
paper, a method is proposed and examples given for the 
introduction of additional observations into a least- 
squares refinement in the form of experimental phase 
information. 

Introduction 

The reciprocal-space least-squares refinement of atomic 
coordinates is becoming a routine procedure in the 
structure determination of macromolecules. The re- 
finement of such structures is handicapped, however, 
by the comparatively low ratio of observed data to 
refined parameters. To increase the overdetermination 
of the refinement, efforts have been made to in- 
corporate additional sources of information into the 
least-squares equations (Waser, 1963). These extra 
terms are generally in the form of molecular geometry 
restraints or constraints, using stereochemical data 
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obtained from small-molecule structures. The quantity, 
¢~, minimized by the least-squares method may then be 
expressed as the sum of several terms: 

!~1_~. ~ (.Oh [ {Fo{ _ {Fe{ ]2 + ~ O.)p(po__Pmodel)2, (1) 

where the first summation is the residual between 
observed and calculated structure factors, while the 
second summation contains the restraints between 
observed and model values for various stereochemical 
parameters. The weighting functions o9 h and ogp control 
the contribution of each term to the least squares. 

Traditionally, the role of experimental phases in a 
structure determination was limited to calculation of 
the electron density. Phases have been excluded from 
least-squares refinements, although inclusion of the 
experimental phases in a structure refinement could 
approximately double the number of observations. In 
addition, several protein structure refinements suggest 
that the experimental phases may indeed contribute 
useful information to the structure refinement. Phases 
calculated from a refined model agree more closely with 
the experimental phases than phases calculated from 
the preliminary model (Watenpaugh, Sieker, Herriot & 
Jensen, 1973; Rees, Lewis & Lipscomb, 1982). 

Experimental phases usually contain significant 
random errors, but are free of systematic errors due to 
misinterpretation of the electron density map. We wish 
to demonstrate in this paper that by using appropriate 
selection criteria, experimental phases may indeed 
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